Size-controlled fluorescent nanodiamonds: a facile method of fabrication and color-center counting.
نویسندگان
چکیده
We present a facile method for the production of fluorescent diamond nanocrystals (DNCs) of different sizes and efficiently quantify the concentration of emitting defect color centers (DCCs) of each DNC size. We prepared the DNCs by ball-milling commercially available micrometer-sized synthetic (high pressure, high temperature (HPHT)) diamonds and then separated the as-produced DNCs by density gradient ultracentrifugation (DGU) into size-controlled fractions. A protocol to enhance the uniformity of the nitrogen-vacancy (NV) centers in the diamonds was devised by depositing the DNCs as a dense monolayer on amino-silanized silicon substrates and then subjecting the monolayer to He(+) beam irradiation. Using a standard confocal setup, we analyzed the average number of NV centers per crystal, and obtained a quantitative relationship between the DNC particle size and the NV number per crystal. This relationship was in good agreement with results from previous studies that used more elaborate setups. Our findings suggest that nanocrystal size separation by DGU may be used to control the number of defects per nanocrystal. The efficient approaches described herein to control and quantify DCCs are valuable to researchers as they explore applications for color centers and new strategies to create them.
منابع مشابه
High yield fabrication of fluorescent nanodiamonds.
A new fabrication method to produce homogeneously fluorescent nanodiamonds with high yields is described. The powder obtained by high energy ball milling of fluorescent high pressure, high temperature diamond microcrystals was converted in a pure concentrated aqueous colloidal dispersion of highly crystalline ultrasmall nanoparticles with a mean size less than or equal to 10 nm. The whole fabri...
متن کاملSTED imaging of green fluorescent nanodiamonds containing nitrogen-vacancy-nitrogen centers.
We report Stimulated Emission Depletion (STED) imaging of green fluorescent nanodiamonds containing Nitrogen-acancy-Nitrogen (NVN) centers with a resolution of 70 nm using a commercial microscope. Nanodiamonds have been demonstrated to have the potential to be excellent cellular biomarkers thanks to their low toxicity and nonbleaching fluorescence, and are especially appealing for superresoluti...
متن کاملImaging of transfection and intracellular release of intact, non-labeled DNA using fluorescent nanodiamonds.
Efficient delivery of stabilized nucleic acids (NAs) into cells and release of the NA payload are crucial points in the transfection process. Here we report on the fabrication of a nanoscopic cellular delivery carrier that is additionally combined with a label-free intracellular sensor device, based on biocompatible fluorescent nanodiamond particles. The sensing function is engineered into nano...
متن کاملRole of Nanodiamonds in Drug Delivery and Stem Cell Therapy
Context: The use of nanotechnology in medicine and more specifically drug delivery is set to spread rapidly. Currently many substances are under investigation for drug delivery and more specifically for cancer therapy. Evidence Acquisition: Nanodiamonds (NDs) have contributed significantly in the development of highly efficient and successful drug delivery systems, and in stem cell therapy. Dru...
متن کاملFabrication of black printing toner through in situ polymerization: An effective way to increase conversion
Styrene-acrylate copolymer was synthesized in presence of carbon black through heterogeneous polymerization. The percentage of monomer conversion was measured by gravimetric method, also PSA, SEM, DSC and GPC were used for studying the particle size and particle size distribution, morphology, thermal properties and molecular weight, respectively. As well as color properties were characterized b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 5 23 شماره
صفحات -
تاریخ انتشار 2013